三氯化硼红外多光子吸收分离硼同位素 过程中氟氯化硼的生成

李 丽 陈关城 张瑞君 康 宁 (中国科学院青海盐湖研究所)

提要:分析讨论了聚焦的 TEA CO₂ 激光辐照 BCl₃-O₂ 体系分离硼同位素 的反应产物和机制。 BCl₃和 O₂ 反应的稳定产物为 B₂O₃,未发现(BOCl)₃。 实验还表明,在强红外激光作用下,BCl₃与氟脂发生光化学反应,生成 BFCl₂。讨论了多光 子离解产物与氟脂反应的动力学过程,提出了可能的反应机制。

The formation of boron fluoro-chloride in the separation of boron isotopes by multiphoton absorption of BCl₃

Li Li Chen Guancheng Zhang Ruijun Kang Ning (Institute of Salt-Lake, Academia Sinica)

Abstract: The reaction products in the process of boron isotope separation by multiphoton absorption of BCl₃ have been studied. When oxygen was used as a scavenger, the stable solid product was B_2O_3 , and (BOCl)₃ was not found. Our experiments show that when irradiated with focused TEA CO₂ laser, BCl₃ reacted with fluorocarbon grease to form boron fluoro-chloride and boron trifluoride. A possible mechanism for the reaction between BCl₃ and fluorocarbon grease has been proposed. It seems that BCl₃ was first dissociated into BCl₂ and Cl by intense IR laser action, and BCl₂ then reacted with fluorocarbon grease to form BFCl₂. Moreover BF₂Cl and BF₃ were formed because of the dismutation of BFCl₂.

1974年 Ambartzumian 等人^[13]用 BCl₃ 的红外多光子吸收实现了激光分离 硼同位 素,以 O₂ 作捕捉剂浓缩系数达 8^[23]; Lyman 等^[33]以 H₂ 作捕捉剂浓缩系数 1.2。1976年 到 1978年,我所和物理所的一个协作小组进 行了用聚焦的 TEA CO₂ 10.6 微米激光 辐照 BCl₈-O₂体系分离硼同位素的实验。实验结 果已有详细报告^[4]。实验中发现,残余气体 红外光谱图中出现一些新吸收峰,有的峰变 形,一些峰随时间变化,红外测得的浓缩系数 比质谱测得的高得多等等。这些当时都未能 给出满意的解释。在此基础上,我们又进行 了一些实验,对上述现象作了分析,并对 BCl₈ 的光化学反应机制进行了讨论。

收稿日期 1980年2月7日。

. 33 .

二、实 验

本实验所用 BOl₃ 试样由天然同 位素 丰度的 KBF₄ 和 AlCl₃ 复分解反应制取:

 $KBF_4 + AlCl_3 \longrightarrow KF + AlF_3 + BCl_3$ (1)

经化学分析,样品含 BOls 不少于 98%; 由红 外光谱图(图1)可见,不含在 10.6 微米附近 有吸收的杂质。BCls 和预先干燥的 O2 在玻 璃真空系统中混合后充入反应池。玻璃反应 池长 10 厘米, 直径 2~3 厘米, 两端安有 NaCl 窗口, 照射前后用作吸收池测红外光谱。BCls

和 O_2 分压用 FL-2 油 U-型压力计测试。真 空活塞用全氟脂密封。反应池和真空系统使 用前预先用较大压力(几十个托)BCl₃"钝化" 数小时,以消除少量水及其它与 BOl₃ 起作用 之物,然后抽至 $1\sim 2\times 10^{-2}$ 托, 方充气使用。 TEA CO₂ 激光器输出 CO₂[001] \rightarrow [100] 跃 迁的 P[20] 支线; 脉冲能量为 0.8 到 1 焦耳; 重复率 1 到 2 赫; NaCl 透镜聚焦。

三、结果与讨论

1. BCl₃ 与 O₂ 的光化学反应

激光照射过程中焦点区附近的池壁上有 白色物质逐渐附着。照射后抽掉残余气体, 测空池红外光谱,见到 B₂O₃ 的典型吸收 图 (图 2 虚线)。这是附着在 NaCl 窗口上少量 B₂O₃ 所致。残余气体红外光谱 图 (图 2 实 线)未见(BOCl)₃ 的吸收峰。所以,与Ambartzumian 的结果一致, BCl₃ 多光子吸收后与 O₂ 反应的最终产物是 B₂O₃。附着在池壁上 的 B₂O₃ 转化成硼砂后,经质谱测定,¹¹B 被 富集。

2. BCl。在强红外激光诱导下与氟脂的 反应

图 2 激光照射后残余气体红外光谱图(照射时间 30 分钟;虚线为空池背景)

. 34 .

上面说到,激光照射后残余气体的红外 光谱发生了变化。由图 2 看出,995 厘米⁻¹ 处的吸收峰变宽,999 厘米⁻¹处增加了一个 峰尖;1031 厘米⁻¹处新出现一个双尖的吸收 峰,两个峰尖的位置分别为1031 厘米⁻¹和 1040 厘米⁻¹;1000~1600 厘米⁻¹区域还有一 些新峰出现。这些变化曾被认为是 BCl₃ 与 O₂ 反应的中间产物或 B₂O₃ 的 气溶胶引起 的。但经过我们的工作证明是在激光作用下 生成的氟氯化硼和 BF₃ 引起的。

¹¹BFCl₂的 v₄ 峰为双峰,两个峰尖的位 置是 993 厘米⁻¹和 999 厘米⁻¹。 993 厘米⁻¹ 与 995 厘米⁻¹只差两个波数,因此看不出两 个单独的峰尖; 999 厘米⁻¹与之位移较大,峰 尖非常明显。¹¹BFCl₂的 v₁ 亦为双峰,在 1312 厘米⁻¹附近; 1031 厘米⁻¹和 1040 厘 米⁻¹的双峰对应于 ¹⁰BFCl₂的 v₄ 峰(1031 厘 米⁻¹、1040 厘米⁻¹),它的 v₁ 峰为双峰,在 1355 厘米⁻¹处。BF₂Cl和 BF₃的两种硼同 位素分子的吸收峰在图 2 中也一一对应。

氟氯化硼和三氟化硼的出现是由于在强 红外激光作用下 BCl₃ 与全氟脂、FL-2 油相 互作用的结果。我们所用的全氟脂、FL-2 油 是全取代氟烷、氟氯烷,我们的实验表明有一 些挥发性。但实验证明,不照激光,BCl₈ 与 之接触数十天无反应发生;不聚焦照射上万 次,也不诱发反应;聚焦照射单纯 BCl₃(即不 充 O₂ 或空气),有氟氯化硼生成;照射 BCl₃-O₂ 体系,B₂O₃ 和氟氯化硼同时产生;BCl₃ 分 压及照射次数相同时,无 O₂ 存在时产生的氟 氯化硼比有氧气存在时多。

由于存在平衡[8]

 $BCl_3 + BF_3 \longrightarrow BFCl_2 + BF_2Cl$ (2) 平衡常数 $k(=[BFCl_2][BF_2Cl]/[BCl_3][BF_3])$ 为^[9]:

 $t^{\circ}C$ 18 28 45 k 0.48 0.53 0.58

平衡时四种分子应同时存在。我们的实验通常是照射 30~40 分钟后测红外光谱,图中出

现这四种分子的两种硼同位素分子的吸收 峰,但由于这个交换反应有较高的活化能^[10], 交换反应在常温下并不快。我们的实验观察 到,照射停止后,随着放置时间增长,BFCl₂ 吸收峰变小,BF₂Cl、BF₃和¹¹BCl₃峰变大 (¹⁰BCl₃峰由于与¹¹BFCl₂峰重迭,总结果也 变小)。当缩短照射时间并在照射后迅速测 红外光谱时,BFCl₂吸收峰出现,而BF₂Cl 和 BF₃峰很小,随着放置时间增长,它们相 继变大(图 3)。由此看出,反应最初生成 BFCl₂,而 BF₂Cl、BF₃是由 BFCl₂转化来 的。

图 3 激光照射 5 分钟后红外光谱随时间的变化 BCl₃ 压力为 6 托;实线为照射后 2 分钟扫描; 虚线为照射后 45 分钟扫描

文献[4]还曾提到,若把照射后残余气体 进行冷冻分离,出现馏分红外光谱"异常"。其 实,考虑到 BF₃、BF₂Ol、BFCl₂和 BCl₃分子 量不同,在相同温度下蒸气压不同就很容易 理解了。在低温下先挥发的气体中 BF₃、 BF₂Cl 含量多;随后是 BFCl₂,此时就出现 995 厘米⁻¹处峰比 956 厘米⁻¹峰还高的现象 (图 4);而最后的气体主要是 BCl₃。图 4(*b*) 为(*a*)图 900~1100 厘米⁻¹波段的展宽,可以 明显看出,995 厘米⁻¹处的峰为双峰,两个峰 尖的位置分别为 993 厘米⁻¹和 999 厘米⁻¹, 而 ¹⁰BCl₃的 ν_3 峰为 995 厘米⁻¹, 更靠近红

 $^{10}BCl_3 + ^{11}BFOl_2 \longrightarrow ^{10}BFOl_2 + ^{11}BCl_3$

(3)

不仅引起吸收峰随时间变化, 而且对分离同 位素不利。

¹¹BFCl₂的 ν₄峰与 ¹⁰BCl₃的 ν₃峰的重 迭,严重影响用红外光谱测定浓缩系数。

质谱分析中,未照激光的 BCla 电离产物 质荷比在80~86 区域有6个峰,残余气体为 7个峰(见表1)。

	_
-	
-	
- LAL	_

and the same to market		
质荷比	照射前	照射后
80	¹⁰ B ³⁵ Cl ₂ ⁺	10B35Cl2+
81	¹¹ B ³⁵ Cl ⁺ ₂	11B35Cl2+
82	¹⁰ B ³⁵ Cl ³⁷ Cl+	10B35Cl37Cl+
83	11B35Cl37Cl+	¹¹ B ³⁵ Cl ³⁷ Cl+(¹⁰ BF ³⁵ Cl+)
84	10B37Cl2+	¹¹ B ³⁷ Cl ⁺ ₂ (¹¹ BF ³⁵ Cl ⁺)
85	¹¹ B ³⁷ Cl ⁺ ₂	¹¹ B ³⁷ Cl ⁺ ₂ (¹⁰ BF ³⁷ Cl ⁺)
86	无一元	¹¹ BF ₂ ³⁷ Cl+
10 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C		The second state of the se

我们用峰高比 Iso/Is1 来计算 10B 与 11B 的丰度比, 将几个样品质谱测得的浓缩系数 与红外结果对照如下(见表2)。

冰塘东料 8-	(10B/11B)	照射后	BCl ₃
松细示致 P=-	(10B/11B)	1 昭射前	BCl _a

表 2				
红 外 结 果	我(质 谱 结 果		
1.37	0.1	1.04		
1.19		1.05		
1.03		1.08		
1.36		1.14		

我们认为,质谱结果更可靠些。

8. 反应机制

对 BCl3-O2 体系的紫外光解反应机制已 提出一些看法。D. J. Knowles^[12]认为是

$$BCl_3 \xrightarrow{h\nu} BCl + Cl_2$$
 (4)

$$BC1+O_2 \longrightarrow BC1O_2$$
 (5)

$$BC1 + BClO_2 \longrightarrow 2BOCl$$
 (6)

 $3BOC1 \longrightarrow (BOC1)_3$ (7)

他们认为, BCl, 不如 BCl 稳定, 所以生成 BCl。的可能性不如生成 BCl 的可能性大,产 物中未发现有氯的氧化物似乎也证明光解未

图 5 低温分馏气体红外吸收峰随时间的变化 (a)一为第一次测得的红外图; (b)一为110分钟后再测得的红外图

端。低温下分馏出来的氟氯化硼在常温下必 然发生"歧化",直至平衡建立,图5为900~ 1050 厘米-1波段三个峰随时间的变化。

选择激发¹¹BCl₃时,生成的BFCl₂中¹¹B 富集, 残余 BCl3 中 10B 富集。而不同同位素 分子间的交换反应[11]:

. 36 .

产生氯原子。Rockwood^[13]也有这种看法。 红外多光子离解机制可能与紫外光解有所不 同。Ambartzumian的实验观察到,在BCl₃ 的延迟荧光阶段,在紫外区有激发态BCl的 荧光谱线^[14];有O₂存在时,在可见区有激发 态BO^[1]的荧光谱线。Rockwood^[15]、Lyman^[3] 用聚焦的10.6 微米脉冲激光照射BCl₃-H₂ 体系时,产物为单一的BHCl₂和HCl。他们 由此推论,BCl₃的红外光解碎片是BCl₂和 Cl。由此可见BCl₃的红外光解碎片及其与 捕捉剂反应的动力学问题是一个非常有趣而 又十分复杂的问题。

我们的实验结果表明,碎片可能是 BCl₂ 和 Cl。在我们的体系中,光解碎片发生两个 平行反应:一个是与 O₂ 的反应,另一个是与 氟烷、氟氯烷反应。后一个反应虽然对分离 同位素起一些不利影响,但对搞清光化学反 应动力学意外地提供了信息。由上面的叙述 看出,虽然反应进行一些时间后 BF₂Cl、BF₃ 也都生成了,但反应最初只生成 BFCl₂。我 们提出如下机制:

$$BCl_3 \xrightarrow{nn\nu} BCl_2 + Cl$$
 (8)

$$\mathrm{BCl}_2 + \mathrm{C}_n \mathrm{F}_{2n+2} \longrightarrow \mathrm{BFCl}_2 + \mathrm{C}_n \mathrm{F}_{2n+1}$$
 (9)

$$\mathcal{O}_{n}\mathcal{F}_{2n+1} + \mathcal{O}_{l} \longrightarrow \mathcal{O}_{n}\mathcal{F}_{2n+1}\mathcal{O}_{l}$$
 (10)

 $2Cl \longrightarrow Cl_2$ (11)

 $2C_n F_{2n+1} \longrightarrow C_{2n} F_{4n+2} \tag{12}$

 $2BFCl_2 \rightleftharpoons BF_2Cl + BCl_3 \quad (13)$

 $BFCl_2 + BF_2Cl \longrightarrow BCl_3 + BF_3 \qquad (14)$

多光子离解产生何种碎片,可能会与激 光强度等因素有关。为彻底搞清楚离解机制 和捕捉反应动力学,还需要更深入地研究。分 子束与短脉冲技术的应用可能会给出直接的 证明,它们是研究化学反应微观过程的强有 力工具。

四、总

通过我们的工作,得到以下结果:

结

1. BCl_a 在强红外场作用下离解碎片可 能是 BCl_a和 Cl_o

2. 离解碎片与 O₂ 反应生成的稳定产物 是 B₂O₃, 红外光谱图中未发现有(BOCl)₃ 的 吸收峰。当选择激发¹¹BOl₃ 时, ¹¹B 在 B₂O₃ 中富集。

3. BCl₃和氟烷不发生暗反应;未聚焦的 TEA CO₂ 激光照射,也无明显反应;但聚 焦辐射下发生反应。反应最初生成 BFCl₂, 随后 BFCl₂ 又"歧化"生成 BF₂Cl 和 BF₃。

在本工作进行过程中,本所六室康靖文、 王振升同志参加了有益的讨论;所属工厂玻 璃车间师傅给了热情的支持。本所三室刘福 敏同志在红外测试方面提供了方便。

参考文献

- [1] Р. В. Амбарцумян и др.; Письма в ЖЭТФ, 1974,
 20, №9, 597~600.
- [2] R. V. Ambartzumian et al.; Sov. J. Quant. Electron., 1976, 5, No. 10, 1196.
- [3] J. L. Iyman et al.; J. Appl. Phys., 1976, 47, No. 2, 596.
- [4] 中国科学院青海盐湖所与物理所协作小组;《激光》, 1979, 6, No. 11, 11.
- [5] L. P. Lindemann et al.; J. Chem. Phys., 1956, 24, 242.
- [6] R. E. Scruby et al.; J. Chem. Phys., 1951, 19, No. 3, 386.
- [7] R. G. Steinhardt et al.; J. Chem. Phys., 1965, 43, 4528.
- [8] E. L. Muetterties; "The Chemistry of Boron and Its Compounds", 1967, p. 342.
- [9] S. R. Gunn et al.; J. Chem. Phys., 1960, 33, 955~959.
- [10] R. E. Nightingale et al.; J. Chem. Phys., 1954, 22, 1468.
- [11] B. V. Maslov et al.; Zh. Prikl. Khim., 1971, 44, No. 1. 39~43.
- [12] D. J. Knowles et al.; Inor. Chem., 1965, 4, No. 12, 1799~1804.
- [13] S. D. Rockwood et al., LA-5761-SR, 1974.
- [14] R. V. Ambartzumian et al.; Chem. Phys. Lett., 1975, 36, No. 3, 301~304.
- [15] S. D. Rockwood et al., Chem. Phys. Lett., 1975, 34, No. 3, 542~545.